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Lecture 8: SVD applications



Recap

* SVD: Let 6 > -+ = g2 > 0 be nonzero eigenvalues of ¢*¢ with corresponding
orthonormal eigenvectors vy, ..., V.. Let w; = @(v;)/0;. Then:

> Wi, ..., W, are orthonormal, ¢ (v;) = g;w; and @; (w;) = g;v;.
> Q= Zl 1 0; |[wi{(v;|, where |w;){v;| is outer product.

* Matrix view: A = Y,;_, o;w;v; = WZV*, where W has wy, ..., w,- as columns, V*
has v{, ..., v asrows, and X i |s an r X r diagonal matrix with X;; = a;.
* Let 4, = {‘ 1 0iw;v;. Then: P
|(4—B)ll, = max I ||_v|| ol
Proposition 2.1 [|A — Ai||, = 0p,1. ?

Proposition 2.4 Let B € C"*" have rank(B) < kand let k < r. Then ||A — B||, = 0%41.



Frobenius norm approximation

Now: show that A, is the rank-k matrix B minimizing Frobenius norm \/Zij(A — B)l-jz.

Equivalently, if we think of each row of A as a data point, we are finding the rank-k
subspace that minimizes the mean squared distance of the points to that subspace
(Aj represents projecting each point in A to this subspace).

Will use this view in our discussion.

To match the notes, m - n,n - d.



Least squares approximation

Let ay, ..., a, € R%. Want to find subspace S that minimizes Y. , dist(a;, $)2.

Claim 1.1 Let uy,...,uy be an orthonormal basis for S. Then

k
(dist(a;, 9))* = llaill; — Y (as,u;)* .

j=1

Remark:

* The dist(a;, S) is independent of choice of orthonormal basis.
" Different ways of computing it but not different quantities



Least squares approximation

Let ay, ..., a, € R%. Want to find subspace S that minimizes Y. , dist(a;, $)2.

Claim 1.1 Let uy,...,uy be an orthonormal basis for S. Then

k

(dist(a;, $))* = a5 — Y (a;, u;)

j=1

2

Proof:

perp

» Can write a; = al™ + a?®’? where al™ is the projection of a; to S and a?®’? is orthogonal to S.

. Get [|a?™P||” = lla;lf — [|ain||”

* Formally, extending uy, ..., ux to orthonormal basis for R¢ and writing a; in this basis.



Computing dist(a;, S)

Ug, ) U, Ug+1, 0t Ug
* Any u € § can be written as u := le b; u;
*a; = N Gy
‘4 —uU= §§=1(Cj - bj) U + Zj'i:k+1 Cj Uj
cllag —ull? = 5| — b|” + X ien I 12
= Z?=k+1 |Cj|2

=T 1612 = B 117 = llall? - B (e )|



Least squares approximation

Let ay, ..., a, € R%. Want to find subspace S that minimizes Y. , dist(a;, $)2.

Claim 1.1 Let uy,...,uy be an orthonormal basis for S. Then

k

(dist(a;, $))* = a5 — Y (a;, u;)

j=1

2

Since the 15t term on the RHS is fixed, our goal can be viewed as: find k orthonormal
2
vectors uy, ..., Uy to maximize ).t 4 Z;-‘zl(ai, u;) .

Equivalently (with A as the matrix with al-T as row i),

we want to maximize Z;‘zl Y {ai uj)z = §=1||Auj||2.




Least squares approximation

Proposition 1.2 Let vy, ..., v, be the right singular vectors of A corresponding to singular values
oy > -+ > 0y > 0. Then, for all k < r and all orthonormal sets of vectors uy, ..., uy

2 2 2 2
|Aug[l + -+ [[Aul[y < [[Avr]l3 4 - + [[Avk][3

Proof: by induction on k.
Base case (k = 1):

¢ ||Au1||2 = (Auq, Auy) = <u1;ATAu1> = %%’é RATA(U) = 012 = ||AV1||2-



Least squares approximation

Proposition 1.2 Let vy, ..., v, be the right singular vectors of A corresponding to singular values
oy > -+ > 0y > 0. Then, for all k < r and all orthonormal sets of vectors uy, ..., uy

2 2 2 2
|Aug[l + -+ [[Aul[y < [[Avr]l3 4 - + [[Avk][3

Proof: by induction on k.

General k:

- Let’s define V=, = {v € R%:(v,v;) = 0 Vi € {1, ...,k — 1}}, and assume for now that

* So, l[Aull> < max  [lAv||* = g = [|Avi|I*
UEVk_l,”v”:l

* And ||[Auq||? + -+ + [|Aug_1|I* < |Av4|I? + - + ||Avi—1 || by induction. So, done.

So, just need to argue why we can assume wlog that u,;, € V,;L_l.



Least squares approximation

Claim 1.3 Given an orthonormal set i, ..., uy, there exist orthonormal vectors ui, e, uj{ such
that

| 1
= HL E Vk_l.
- Span (uq,...,ux) = Span (ui,...,u;{).
2 2 2 2
- Ay 4+ JAuglly = (JAug|ly + - [ Aug]

Proof (similar to a proof we used last class):

e Since dim(Vi—;) = d — k + 1 and dim(Span(uy, ..., ux)) = k, there must exist some
Uy in the intersection with [|ug|| = 1.

* Complete to an orthonormal basis uy, ..., u;, of Span(uy, ..., u).

* Satisfies 3" property because LHS and RHS both equal the sum of squared lengths of
the projections of the rows of A into this k-dimensional subspace.



GerShgorln DlSC Theorem { Sum of absolute values of off- ]

diagonal entries in row i.

Theorem 2.1 (Gershgorin Disc Theorem) Let M € C"*". Let R; = Y ;.; |M;j|. Define the
set
DiSC(Mﬁ,RI—) = {Z cC: ‘2 — M£f| < Ri} ,

If A is an eigenvalue of M, then

1
A € | Dise(Mj;, R;).
i=1

If matrix is close to being diagonal,

then eigenvalues are close to the diagonal entries.

-3

source: golem.ph.utexas.edu



GerSthﬂn D|SC Theorem [ Sum of absolute values of off-

diagonal entries in row i.

|

Theorem 2.1 (Gershgorin Disc Theorem) Let M € C"*". Let R; = };; |M5j|. Define the
set
DiSC(M,‘j,R,‘) = {Z cC: ‘Z — M5}'| < R}} :

If A is an eigenvalue of M, then

A € | Dise(Mj;, R;).
1=1

Input:
= 01 01 If matrix was perfectly-diagonal, thgn eigenvalues
eigenvalues [_0_1 6 0_1] would be exactly the diagonal entries.
g1 O1 7 .
. Proof strategy: for eigenvector x, pick coordinate
x; of largest absolute value. Show eigenvalue
0
Ay = 7.01475 | M
close to igig
1, ~ 5.98019

13 ~ 5.00506



GerSthrln DISC Theorem [ Sum of absolute values of off- J

diagonal entries in row i.

Theorem 2.1 (Gershgorin Disc Theorem) Let M € C"*". Let R; = },;; |M;;|. Define the

set

il
Disc(M;;, R;) := {ze€C:|z—M;| <R;}.
If A is an eigenvalue of M, then
A E L”J Disc(M;;, R;) .
Proof: =t

* Let x be an eigenvector with eigenvalue A. Let x; be coordinate of largest absolute value.

loloxlo

* 2 Migjxj = Axige SO, Xjaiy Migjxj = Ay, —

. SO |A Ml()lol < Z |Ml0]||x]| < Zj;tiolMiojl — RiO'

J#lo |xio|



That’s it for today

 Solutions for hwk1, hwk2 are on the course webpage.
* Midterm on Monday.

* Good luck!
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